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Abstract

In order to maintain a reasonable rf system, it is necessary for the muon

collider to have a slippage factor � < 1� 10�6 for all the particles in the bunch.

The buckets dominated by the zeroth order, �rst order, or second order of � are

examined, and the required rf voltages are computed. The problem of microwave

instability is addressed. The reliability of computing higher-order momentum-

compaction factor using a lattice code is discussed.

Expanded from a talk given at the

2+2 TeV �+�� Collider Collaboration Meeting

at Fermilab, April 1-3, 1996

�Operated by the Universities Research Association, Inc., under contract with the U.S. Department

of Energy.
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I. INTRODUCTION

The high luminosity of the recently proposed 2 TeV-2 TeV muon-muon col-

lider calls for a collider ring of circumference C0 = 2�R � 8000 m with an rms

bunch length of �` = 3 mm (10 ps) and rms momentum spread of �� = 0:15%.

The short bunch length as well as a reasonable rf voltage limit the slippage factor

of the collider to � <� 1 � 10�6, which is to be discussed in Sec. II. Section III

reveals the disadvantages of the �-like bucket one would expect when the ring is

operated so close to being isochronous. In Sec. IV, sextupoles are inserted into

the arc regions to eliminate the �rst order of the momentum-compaction factor in

momentum o�set. This restores the bucket to pendulum-like. There is a choice

of making the lattice second order or zeroth order momentum-compaction dom-

inant. These two situations are discussed in Sec. V and Sec. VI. The reliability

of computing the second-order momentum-compaction using lattice codes is ad-

dressed in Sec. VII. The problem of microwave instability of the muon bunches in

a ring operated so near to transition is discussed in Sec. VIII. Finally, conclusions

are given in Sec. IX.

II. LIMITATION OF SLIPPAGE FACTOR

When a muon bunch is delivered to the muon collider ring from the accel-

erator, it may be lengthened or shortened due to the potential distortion of the

rf force. Besides this, however, the bunch can also be lengthened due to the ex-

cessive debunching �` between two consecutive passages through the rf system.

Since the rf system is most likely concentration in one location of the ring, we

must have

�` = j�jC0�� � �` ; (2.1)

with C0 denoting the length of the on-momentum closed orbit, or

j�j � �`
��C0

� 2:5� 10�4 : (2.2)

The above is only the limitation set by the lattice of the ring. For debunching

in one turn, the rf system must supply enough energy to place the debunched

particle back into the bunch. This amount of energy is given by

�E =
eV h�`

R
; (2.3)
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where h the rf harmonic, V the rf voltage, and E = 2 TeV the energy of the

muons. Substituting ��E and �` for �E and �`, respectively, Eq. (2.2) gives

hV = 1:273�106 GV. With h = 6:667�104 so that the bucket width is about 40

times the rms bunch length, we arrive at V = 19:10 GV, which is certainly too

large to achieve. For this reason, the slippage factor must be made very much

less than 2:5 � 10�4, and its limitation must be discussed together with the rf

voltage.

For a small bunch, the bunch length and momentum spread are related by

�s�` = Rj�j�� ; (2.4)

where the synchrotron tune is given by

�s =

s
hj�jeV
2��2E

: (2.5)

Putting in numbers, we arrive at

hV

j�j = 5:093� 1012 MV : (2.6)

Let k denotes the ratio of total bucket length to rms bunch length. We can then

compute the rf voltage for j�j = 1� 10�5 and 1� 10�6, and the results are listed

in Table I. The total length of a bunch is usually 5 to 6 times its rms values, so

that 40 to 80 is a reasonable value for k. We can see from the table that for a

reasonable rf voltage, we must restrict the slippage factor to j�j <� 1 � 10�6 for

all muons in the bunch, where j�j < �max � 2��.

When the slippage factor is small enough, the next order may become impor-

tant. The closed-orbit length C at momentum o�set � can be expanded as

C = C0(1 + �0� + �1�
2 + �2�

3 + � � � ) ; (2.7)

where �0 is the lowest order of the momentum-compaction factor of the lattice

and �1, �2; � � � are the higher orders. On the other hand, we want the phase-slip

equation to be written as
d��

dt
= !0�� ; (2.8)

where the de�nition of the slippage factor

�T

T0
= �� = �0� + �1�

2 + �2�
3 + � � � ; (2.9)
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Table I: RF voltages corresponding to di�erent
slippage factors and rf harmonics.

k h j�j V (MV) �s

20 1:333 � 105
1 � 10�5

1 � 10�6

383:0

38:3

6:37 � 10�3

6:37 � 10�4

40 6:667 � 104
1 � 10�5

1 � 10�6

763:9

76:4

6:37 � 10�3

6:37 � 10�4

80 3:333 � 104
1 � 10�5

1 � 10�6

1528

153

6:37 � 10�3

6:37 � 10�4

has been used. In the above, !0=2� is the revolution frequency of the on-

momentum particle. The detail is derived in the Appendix. Since the revolution

period T is equal to orbit length divided by velocity, it is then not di�cult to

obtain

�0 = �0 � 1


2
; (2.10)

�1 = �1 +
3�2

2
2
� �0

2

; (2.11)

�2 = �2 +
�1


2
� 2�4


2
+

3�0�
2

2
2
+
�0

4

; (2.12)

where 
 and � are the relativistic Lorentz factors of the on-momentum particle.

For a 2 TeV muon, 
�2 = 2:73� 10�9 which is very much less than the required

j�j. Therefore, we have rather accurately, �1 � �1 and �2 � �2.

III. THE �0 and �1-DOMINATED ASYMMETRIC BUCKET

When �0 <� 1 � 10�6, we need to include the next lowest nonlinear term of

the slippage factor. The Hamiltonian describing the motion of particle in the

longitudinal phase space becomes

H =

 
�0�

2

2
+
�1�

3

3

!
h!0 +

eV !0
2��2E

[cos(�s + ��) + �� sin�s] ; (3.1)

where �s is the synchronous phase. With the presence of �1, the symmetry

of the higher- and lower-momentum parts of the phase space is broken. As a
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Figure 1: (a) When j�0=�1j is not too small, the longitudinal phase space

shows 2 series of distorted pendulum-like buckets. (b) As j�0=�1j decreases
to the critical value in Eq. (3.2), the 2 series merge. (c) Further reduction

of j�0=�1j leads to new pairing of stable and unstable �xed points and the

buckets become �-like. In each case, the dotted line is the phase axis at zero

momentum spread, and the small circles are the stable �xed points.

result, the phase-space structure will be very much disturbed. This Hamiltonian

gives stable �xed points at (2n�; 0), (2(n+1)��2�s;��0=�1) and unstable �xed
points at ( 2(n+1)�� 2�s; 0), (2n�;��0=�1), where n is any integer. When the

contribution of �1 is much smaller than that of �0, the buckets are still roughly

pendulum-like as shown in Fig. 1(a) for the case of �s = 0. Note that there is

another series of buckets at momentum spread ��0=�1. As j�0=�1j decreases to
a point when the values of the Hamiltonian through all unstable �xed points are

equal, the two series merge as shown in Fig. 1(b). This happens when

�����0�1
���� =

�
6eV

��2h�0E

��
�

2
� �s

�
sin �s � cos�s

��1=2

: (3.2)

The right-hand side is just
p
3 times the half bucket height when the �1

5



term in the Hamiltonian is absent. As j�0=�1j is further reduced, the pairing of

the stable and unstable �xed points is altered, and the bucket become �-like as

illustrated in Fig. 1(c). The bucket height is now given by

�̂ =

8>>>><
>>>>:

+

���� �02�1
���� � > 0 ;

�
�����0�1
���� � < 0 :

(3.3)

Note that the height of the bucket will vanish if the lattice approaches truly

isochronous (�0 = 0).

In order that the slippage factor can be adjusted easily, the 
exible momen-

tum-compaction module (FMC module) proposed by Lee, Ng, and Trbojevic [1]

will be used in the arcs of the collider ring. Such a module has been designed

independently by Garren [2] (Fig. 2) and Ng [3] (Fig. 4) for the muon collider.

Their chromaticities and transition gammas 
t as functions of momentum o�set

are shown in Figs. 3 and 5, respectively.

By adjusting the negative dispersion at the ends of the FMC module, the

zeroth order momentum-compaction factor �0 can easily be tailored to receive

any value between �1�10�5. Within this range of �0, the next two orders �1 and

�2 remain almost unchanged. In order that the �-shape bucket can hold a bunch

with a full momentum spread of �max = �0:3%, a minimum of j�0j = 2j�1j�max is

required according to Eq. (3.3). These results are listed in Table II. Therefore,

Table II: Minimum j�0j required to hold a bunch
�max = �0:3% in the �-shape bucket.

�1 �2 j�0jmin

Garren 5:85� 10�3 2:67 � 10�2 3:5 � 10�5

Ng 3:20� 10�3 1:09 � 10�2 1:9 � 10�5

the limitation of j�j <� 1� 10�6 determined in Sec. II cannot be satis�ed. Note

that the �1 will also contribute to the slippage factor an amount equal to �1�max

which is also larger than 1�10�6. Even if we assume that the momentum spread

could be compressed to �max = �0:01% and that the bunch occupied 1/3 of the
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s in m

Dispersion max/min: 1.51561/�1:73050m, 

t
: ( 0.00, 129.807)

�x max/min: 77.89/ 5.80332m, �x : 0.89598, �x : � 3:44, Module length: 190.0354 m

�y max/min: 83.83/19.28209m, �y: 0.53563, �y : � 1:89, Total bend angle: 0.11400270 rad

Figure 2: Garren's 
exible momentum-compaction module to be used in the

arcs of the muon collider.

Figure 3: Variations of 
�2
t and chromaticities of the Garren's module for

momentum o�set �0:5%.
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s in m

Dispersion max/min: 1.42281/�1:25140m, 

t
: ( 0.00, 129.8296)

�x max/min: 95.82/ 3.67906m, �x: 0.75485, �x : 2:91, Module length: 134.6925 m

�y max/min: 83.43/25.27512m, �y: 0.47469, �y : � 1:80, Total bend angle: 0.14074335 rad

Figure 4: Ng's 
exible momentum-compaction module to be used in the arcs

of the muon collider.

Figure 5: Variations of 
�2
t and chromaticities of the Ng's module for mo-

mentum o�set �0:5%.
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bucket height, we would still have j�j = 3:5 and 1:9� 10�6, respectively, for the

Garren's and Ng's module. The small momentum aperture of the �-like bucket

appears to be impractical for our muon bunches. However, there is a way to

reduced �1 so that the bucket height can be made large enough to accommodate

the momentum spread of the bunch. This will be discussed in Sec. IV. Let us

now review some very peculiar properties of the �-like bucket.

(1) Since the height of the �-shape bucket is �xed, the bucket width is pro-

portional to V �1=2 and so is the bucket area. In fact,

Bucket half width � =

 
j�0j3=2
j�1j

! 
2��2hE

3eV j cos�sj

!1=2

; (3.4)

Bucket area A =
6

5

 
j�0j5=2
�21

! 
2��2hE

eV j cos�sj

!1=2

: (3.5)

Therefore, contrary to the usual pendulum-like bucket, we need to lower the rf

voltage in order to increase the bucket width and bucket area. As an example,

if we set the bucket height to j�0=�1j = k��max and the bucket half width to
^̀= k``max, the required rf voltage times rf harmonic is

hV =
2��2ER2j�0jk2��max

3ek2` `
2
maxj cos�sj

= 1698

�
k�
k`

�2
GV : (3.6)

To arrive at the numerical values, we have used �s = 0 or �, j�0j = 1 � 10�6,

�max = 0:003, and `max = 6 mm. The maximum momentum spread and maxi-

mum length of the bunch are also related by the Hamiltonian,

V

h
=

��2Ej�0j�2max

2e sin2 1
2�max

�
1 +

2

3k�

�
: (3.7)

The maximum half phase spread is �max = h`max=R = 4:71� 10�6h. Therefore,

when the rf harmonic h� 2R=`max = 4:23� 105, Eqs. (3.6) and (3.7) give�
k�
k`

�2
= 3 +

2

k�
; (3.8)

which is universally true, independent of the bunch and lattice parameters. As

a result, we have k� >�
p
3k`, and hV � 5� 1012 V is roughly a constant. Some

reasonable choices are given in Table III.

(2) There is an asymmetry between positive and negative momentum spreads

due to the introduction of �1. As a result, the bunch length will oscillate when
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Table III: RF voltages, harmonics, and frequency for an
�-like bucket with �0 = 1� 10�6 and �̂ = j�0j=�1.

k = �̂=�max k` V (MV) h frf (GHz)

3 1.56 125 5 � 104 1.87

4 2.13 119 5 � 104 1.87

5 2.71 116 5 � 104 1.87

6 3.28 114 5 � 104 1.87

going from positive momentum spread to negative. Since the energy loss due

to the resistive part of the impedance of the vacuum chamber is proportional

to the bunch length, this may lead to a continuous growth of the synchrotron

oscillation amplitude. This instability is called longitudinal head-tail, which had

been observed in the CERN SPS [4]. The instability can become very strong

here because �0 has been made very small.

(3) For electron bunches, there is a strong synchrotron damping due to the

emission of photons. It is possible that an electron outside the �-like bucket will

be damped to attractors inside or outside the bucket without being lost. As a

result, the e�ective bucket will be much larger than the �-like bucket given by the

Hamiltonian. Figure 6 shows such a bucket enlargement for di�erent damping

coe�cients [5]. However, there is no such enlargement for a muon bunch.

(4) As the amplitude of synchrotron oscillation increases, the synchrotron

frequency inside the �-like bucket does not change by very much. However, it

drops to zero very abruptly near the edge of the bucket. This is illustrated in

Fig. 7 [5]. Thus, the �-like bucket resembles a resonance island more than the

usual pendulum-like bucket. Because of the sudden drop of the synchrotron

frequency near the separatrix, higher-order resonances overlap creating a thick

stochastic layer. For this reason, the stable area inside the bucket will be further

reduced.

IV. THE ELIMINATION OF �1

We learn from the previous section that the �1 term leads to a small bucket

10



Figure 6: Particles injected into the shaded regions with damping denoted

by A will eventually be damped to attractors inside or outside the �-like

bucket, shown in black, 90� rotated. As a result, the e�ective bucket area

appears to have increased.

Figure 7: Normalized synchrotron tune inside the �-like bucket as a func-

tion of amplitude of oscillation. Note that the drop is very abrupt at the

bucket edge corresponding to a normalized Hamiltonian of value H = 1. For

comparison, the normalized synchrotron tune inside the usual pendulum-like

bucket is shown in dots.
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area and possibly longitudinal head-tail instability, thus limiting the beam dy-

namic when the machine is near isochronous. Furthermore, the total spread in


�2
t is rather large, � 71�10�6 for the Garren's module (Fig. 3) and � 39�10�6

for the Ng's module (Fig. 5) for a momentum spread of j�j < 0:3%. A large spread

in 
�2
t implies large slippage factors for some beam particles, so that unusually

large rf will be required for bunching. Therefore, it may be a good idea to

eliminate the �1 term. The Hamiltonian then becomes

H =

 
�0�

2

2
+
�2�

4

4

!
h!0 +

eV !0
2��2E

[cos(�s + ��) + �� sin�s] ; (4.1)

where the next nonlinear term, �2, has been included.

A quadrupole bends particles with positive and negative o�-momenta in

opposite directions. To lowest order, it contributes to �0 of the momentum-

compaction factor de�ned in Eq. (2.7). On the other hand, a sextupole bends

particles with positive and negative o�-momenta in the same direction. There-

fore, to lowest order, it contributes to �1. In other words, sextupoles can be used

to modify �1 or �1. A simpli�ed lattice consisting of only FODO cells of thin

quadrupoles and dipoles �lling all spaces is exactly soluble. With thin sextupoles

of integrated strengths

SF =
Z

d`
B00
SF

2(B�)
SD =

Z
d`

B00
SD

2(B�)
(4.2)

inserted, respectively, at the F and D quadrupoles, the e�ect on �1 is [6]

��1 = �SF D̂3
0 � SD �D3

0 ; (4.3)

where D̂0 and �D0 are, respectively, the zero-order dispersions at the focusing

and defocusing quadrupoles, and every quantity in the equation that carries a

dimension is normalized to the half length of the FODO cell. To cancel the

natural chromaticities, SF is chosen positive for the FODO lattice while SD

negative. Thus SF reduces �1 while SD increases it.

We hope that Eq. (4.3) would also apply to the FMC module. To cancel

�1, we therefore employ only SF . The chromaticities left behind or created will

only be a tiny fraction of the huge natural chromaticities of the low-beta at the

interaction region, and can therefore be taken care of easily by the chromatic

sextupoles there.
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We place a pair of SF sextupoles just outside the low-beta quadrupoles of

the FMC module, where the horizontal betatron function and the dispersion are

near maximum. By adjusting the strength of the sextupoles, the variation of the

slippage factor � as a function of momentum o�set changes from nearly linear

in Fig. 3 to parabolic in Fig. 8 for Garren's module. Since the antisymmetric

part of � is no longer present in Fig. 8, we conclude that the contribution of �1

has been eliminated. Note that the total spread of � is only 2:0 � 10�6 for a

momentum spread of �0:5%, and 0:6� 10�6 for a momentum spread of �0:3%.

Similar process can be performed onto the Ng's module, resulting in a para-

bolic variation of the momentum-compaction factor as shown in Fig. 9. Here,

the total spread of � is only 0:8� 10�6 for a momentum spread of �0:5%, and
0:3 � 10�6 for a momentum spread of �0:3%. The spread in � appears to be

less than that for the Garren's module. This may be due to the fact that weaker

quadrupoles have been used in the Ng's module.

Strictly speaking, what are plotted in Figs. 3, 5, 8, and 9 are not slippage

factors but 
�2
t instead. The latter is de�ned as


�2
t =

p

C

dC

dp
; (4.4)

In a power series expansion,


�2
t = a0 + a1� + a2�

2 + � � � ; (4.5)

the expansion coe�cients are related to the various orders of the momentum-

compaction factor by

a0 = �0 ;

a1 = 2�1 + �0 � �2
0 ;

a2 = 3�2 + 2�1 � 3�0�1 � �2
0 + �3

0 : (4.6)

For j�0+�1�+�2�
2j <� 10�6, we have for the requirements of the �-like bucket,(
j�1�j � j�0j ;
j�2�j � j�1j ;

=)
(
ja1�j � 2ja0j ;
ja2�j � 3

2 ja1j ;
(4.7)

The elimination of the �1 term is equivalent to having(
j�1�j � j�0j ;
j�1j � j�2�j ;

=)
(
ja1�j � 2ja0j ;
ja1j � 2

3 ja2�j ;
(4.8)
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Figure 8: Variations of 
�2
t and chromaticities of the Garren's module for

momentum o�set �0:5%.

Figure 9: Variations of 
�2
t and chromaticities of the Ng's module for mo-

mentum o�set �0:5%.
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which is just the elimination of the linear term in 
�2
t .

V. THE �2-DOMINATED BUCKET

With the contribution of �1 eliminated, It is possible to adjust �0 to zero so

that the Hamiltonian becomes

H =
1

4
h!0�2�

4 +
eV !0
2��2E

[cos(�s +��) + �� sin�s] ; (5.1)

Now for �s = 0, the bucket looks pendulum-like with the usual width of �� = 2�.

The bucket half height is

�̂ =

�
4eV

��2Ehj�2j
�1=4

: (5.2)

When the half bunch length `max is short, it is related to the half momentum

spread �max by

�4max =

�
eV h

��2Ej�2j
��

`max

R

�2
; (5.3)

where 2�R is the ring circumference. If we let k denote the ratio of the bucket

height to the momentum spread of the bunch, or �̂ = k�max, we can solve for the

necessary rf voltage and rf harmonic:

V =
��2ERk2���2

2`max
; (5.4)

h =
2R

`maxk2
; (5.5)

where �� = j�2j�2max is desired spread of slippage factor of the bunch. If we let

�� = 1 � 10�6, �max = 0:003, and `max = 6 mm, the required rf voltages for

various values of k are obtained and are listed in Table IV.

The rf voltages appear high but attainable. Note that the rf voltage is pro-

portional to ��, the desired spread in momentum-compaction, and �2max, the

momentum spread of the bunch squared. Thus, the rf voltage can be reduced by

a factor of 10, if we reduce the momentum-compaction spread to �� = 1� 10�7.

On the other hand, the rf frequency is independent of the choice of �� and �max.

For small phase spread, Eq. (5.1) describes a particle oscillating in a quartic

potential (with �� and � interchanged). This is a well-known situation when a
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Table IV: RF voltages, harmonics, and frequency for an
�2-dominated lattice with �� = 1 � 10�6.

k = �̂=�max V (MV) h frf (GHz)

3 54.0 4:72 � 104 1.77

4 96.0 2:65 � 104 0.99

5 150.0 1:70 � 104 0.64

6 216.0 1:18 � 104 0.44

second higher harmonic cavity is present and the two cavity voltages are inversely

proportional to the square of their respective harmonics. For such a system, the

synchrotron frequency is zero at zero oscillating amplitude and increases linearly

with respect to the momentum o�set �, or the 4th root of the Hamiltonian. The

synchrotron frequency increases to a maximum for larger oscillation amplitude

and drops to zero again at the edge of the bucket. Simple derivation gives the

synchrotron tune

�s = �s0F (H) ; (5.6)

where

�s0 =

s
h��eV

2��2E
�� = j�2j�2 (5.7)

is just the synchrotron tune at a spread of slippage factor ��, and the form

factor F (H) can be written as

F�1(H) =
23=4

2�

Z �=2

0

dz
p
cos z

q
1� sin2 �

2 sin
2 z

: (5.8)

The form factor is evaluated at the Hamiltonian value,

H =
eV !0
��2E

sin2 �
2 = 1

4hj�2j!0�4 ; (5.9)

where � and � equal to, respectively, the phase and momentum-o�set excursions

of the beam particle under investigation. This is plotted in Fig. 10. A large spread

in synchrotron frequency can be advantageous to providing Landau damping to

mode-coupling instabilities. For a designed slippage spread of �� = 1 � 10�6

and a bunch of maximum half length `max = 6 mm and momentum spread
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�max = 0:003, we obtain with the aid of Table III, the maximum synchrotron

tune �s = 0:64 � 10�3, which occurs at the edge of the bunch and is almost

independent of what k is used. Thus, for 1000 turns in the muon collider, a

particle makes at the most 0.64 synchrotron oscillation if �� = 1� 10�6.

Figure 10: Synchrotron oscillation frequency inside a �2-dominated bucket.

The abscissa is in value of the Hamiltonian which is normalized to 2 at the

edge of the bucket.

VI. THE �0-DOMINATED QUASI-ISOCHRONOUS

BUCKET

It is also possible to eliminate the contributions of �1 and �2, so that there

will not be any slippage spread for the o�-momentum particles. A closer look of

Fig. 3 and 5 reveals that the 
�2
t curves are bulging upward or the coe�cients

a2 of the parabolic terms in Eq. (4.5) are negative. However, after the sextupole

corrections, we �nd a2 > 0 in both Fig. 8 and 9. This implies that the sextupoles

not only reduce a1, but increase a2 at the same time. In fact, if the study of

sextupoles on momentum-compaction factor in Ref. 5 is extended to another

order of �, we will �nd that, similar to Eq. (4.3), the correction to �2 includes

terms proportional to S2
F and S2

D, and these terms are positive. In other words,
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the sextupoles talk to each other. Therefore the correction to a2 will be sensitive

to the locations of the sextupoles.

In addition to the sextupole pair placed at the low-beta quadrupoles, an-

other pair of sextupoles can be placed next to the F quadrupoles at the module

ends (see Fig. 2). By choosing appropriate strengths for the di�erent sextupole

families, one can 
atten the parabolic behavior of 
�2
t in Fig. 8, so that the

contributions of both a1 and a2 vanish [7]. From the discussion near the end of

Sec. IV, this is equivalent of eliminating the contributions of both �1 and �2

Another way to control a2 without generating a contribution to the a1 is to

pair sextupoles separated by phase intervals of � in the arcs. For example, moving

the two sextupoles from the Garren's module from just outside the low-beta

quadrupoles to inside the low-beta quadrupoles, one can reduce the contribution

of a2 by almost one order of magnitude [8].

With the elimination of the contributions of �1 and �2, the Hamiltonian be-

comes the familiar

H =
h!0�0�

2

2
+

eV !0
2��2E

[cos(�s + ��) + �� sin�s] : (6.1)

For synchrotron phase �s = 0, we have the usual pendulum-like bucket whose

height �̂ can be derived easily,

�̂2 =
2eV

��2Ehj�0j : (6.2)

For a small bunch, the half length `max and the half momentum o�set �max are

related by

�2max =
eV h

2��2Ej�0j
�
`max

R

�2
: (6.3)

If we let �̂ = k�max, the rf voltage and rf harmonic can be solved:

V =
��2Ej�0j�2k

e`max
; (6.4)

h =
2R

k`max
: (6.5)

With j�0j = 1� 10�6, �max = 0:003, and `max = 6 mm, the results are tabulated

in Table V for various values of k.

We see that the rf voltages are of the same order of magnitude as in Table IV

for the �2-dominated bucket, and are in fact a bit less. The synchrotron tune is
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Table V: RF voltages, harmonics, and frequency for an
�0-dominated lattice with � = 1� 10�6.

k = �̂=�max V (MV) h frf (GHz)

3 36.0 4:72 � 104 1.77

4 48.0 2:65 � 104 0.99

5 60.0 1:70 � 104 0.64

6 72.0 1:18 � 104 0.44

independent of k and is given by

�s =

s
hj�0jV
2��2E

=
j�0j�maxR

`max
= 0:637� 10�3 ; (6.6)

which is also comparable to that for the �2-dominated bucket. For this reason,

there is no need to eliminate the �2 term. We only need to control it so that the

total slippage factor is within the design value; for example,

j�0 + �2�
2
maxj <� 1� 10�6 : (6.7)

VII. RELIABILITY OF �1 AND �2

Sections IV and V deal with the corrections to the higher-order terms of 
�2
t

by inserting sextupoles. Naturally, we need to ask how accurate �1 and �2 are

as computed by lattice codes. In SYNCH [9], the o�-momentum closed orbit is

obtained by �rst tracking an initial \�rst guess" particle state vector V0 through

one complete revolution so as to produce a new state vector V1. These state

vectors are 7-element vectors; for example,

V = (x; x0; y; y0;�ds; dp=p; 1) ; (7.1)

where the �rst 4 entries are for the horizontal and vertical deviations and slopes,

the 5th denotes the shortening in orbit length, the 6th momentum o�set, and

the 7th is reserved for misalignment calculation. The transfer matrices of the

ring's elements are then linearized about this initial single-turn trajectory, gen-

erating new transfer matrices, R, and a linearized single-turn transfer matrix

T = RNRN�1 � � �R2R1.
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On may now track a particle vector X0 in a small neighborhood of V0 so that

X0 = V0 + Z0. After one revolution, this vector becomes X1 = V1 + Z1, where

Z1 = TZ0. If X0 is a closed orbit, we must have X0 = X1, or

X0 = V0 + Z0 = V1 + Z1 : (7.2)

Therefore,

X0 = V1 + TZ0 = V1 + T (X0 � V0) ; (7.3)

or the closed orbit is

X0 = �(T + I)�1(V1 � V0) ; (7.4)

where I is the identity matrix.

The length of the closed orbit found in this way should include the wiggling

term which takes care of the fact that the o�-momentum closed orbit is not

parallel to the on-momentum closed orbit. The linearization around the closed

orbit will allow the lowest order calculation of the transition gamma at that

particular momentum o�set. In other words, 
�2
t will be accurate up to the

a1 term. Therefore, we expect �1 should be computed accurately by SYNCH.

In fact, a numerical comparison had been made in Ref. 5 with the theoretical

results of a simpli�ed FODO lattice with only thin quadrupoles and with dipoles

�lling all spaces. For example, the computed e�ect of sextupoles on �1 is shown

in Eq. (4.3). The agreements have been excellent, up to at least 3 �gures for

various quadrupole strengths and number of FODO cells. This does not, however,

exclude the possibility of a disagreement with thick quadrupoles, because the

exact integration of the particle trajectory inside a quadrupole is tedious and time

consuming, and lattice codes usually resort to approximations. Nevertheless,

quadrupoles are usually short compared with dipoles and the bend �eld is usually

weak when the radial o�set is small. Therefore, it is reasonable to hope that the

approximations would not introduce much error.

Because of the linearization of the transfer matrix at the o�-momentum closed

orbit, we do not expect the next higher order in � will be taken into account cor-

rectly. As a result, a2 and �2 will not be computed correctly by SYNCH. Here,

we look into the simpli�ed FODO lattice made up of 300 identical FODO cells

each with a phase advance of � = 2 sin�1 1
2 . By o�setting the momentum by

�0:0001 in small steps, the values of the 
�2
t computed by SYNCH are �tted
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to a polynomial of degree two, with the three coe�cients: a0 = 0:00171503,

a1 = 0:00705748, and a2 = 0:00848989. The corresponding coe�cients of the

momentum-compaction factor are listed in Table VI along with the analytically

computed values. Analytic formulas for �2 together with its e�ect from sex-

tupoles have been derived in this simple model. However, they are rather lengthy

and complicated, and are therefore omitted here. It is obvious that �2 has not

been given correctly by SYNCH. We also tried to �t 
�2
t obtained from SYNCH

to a polynomial of degree 3; the �rst three �'s do not change in their �rst 4

signi�cant �gures.

Table VI: Comparison of SYNCH and theoretical
results for the simpli�ed FODO lattice.

SYNCH Theory

�0 0.00171503 0:00171518

�1 0.00267272 0:00267273

�2 0.00105371 �0:00009099

With �2 not predictable with lattice codes and di�cult to calculate theoret-

ically for the FMC module, we must resort to measurements [10]. The slippage

factor can be inferred by the synchrotron tune of a particle in an o�-momentum

orbit. This can be done by altering the rf frequency from frf by an amount �frf

so that the synchronous particle is in a di�erent closed orbit of length C0+�C at

a momentum p0+�p = p0�0. The phase equation per turn of Eq. (2.8) becomes

d��

dn
= 2��(�)(�� �0) : (7.5)

This is because the synchronous particle which is at � = �0 should have zero

phase slip. With �� = � � �0, Eq. (7.5) can be rewritten as

d��

dn
= 2�

h
�(�0)�� + �0(�0)��

2 + 1
2�

00(�0)��
3 + � � �

i
: (7.6)

Thus the synchrotron tune becomes

�s = �s0

�
�(�0)

�0

�1=2

= �s0

"
1 +

�1
2�0

�0 +

 
�2
2�0

� �21
8�20

!
�20 + � � �

#
; (7.7)
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where �s0 is the synchrotron tune for the on-momentum particle when � = �0.

From Eq. (2.7), the momentum o�set can be written in terms of the orbit-length

o�set,

�0 =
�C

�0C0
� �1

�0

�
�C

�0C0

�2

+ � � � : (7.8)

Since �C=C0 = ��frf=frf , substituting Eq. (7.8) into Eq. (7.7), we arrive at

�s = �s0

"
1� �1

�20

�
�frf
frf

�
�
 
5�21
8�40

� �2
2�30

!�
�frf
frf

�2

+ � � �
#
; (7.9)

where we have used �0 � �0 and �1 � �1.

The maximum momentum spread of the designed muon bunch is �max = 0:003

and � � 1�10�6. Therefore a variation of the rf frequency by �frf=frf � 3�10�9

will be required. Since the �gure of merit of a superconducting cavity can easily

reach Q = 1� 109, such an rf frequency variation should be possible.

A low-intensity proton bunch with small momentum spread is injected into

the muon collider for the measurement. The on-momentum synchrotron tune will

give �0. The higher orders �1 and �1 can be inferred by measuring the synchrotron

tune as a function of �frf=frf . If no asymmetric variation of the synchrotron

tune is observed when �frf=frf varies between �3� 10�9, we can conclude that

the �1 contribution is insigni�cant in this collider lattice. Furthermore, if the

synchrotron tune remains 
at during the variation of �frf=frf , the �2 contribution

is also insigni�cant. The bucket will then be �0-dominated. However, if we see a

parabolic dependency of �s versus �frf=frf , we can tune the machine so that �0

becomes zero. The bucket will then be �2-dominated and the magnitude of �2

can be determined easily.

Strictly speaking, Eqs. (7.7) to (7.9) are not valid when the contribution �0

is small. Under that situation, we can write

�s =

�
heV

2��2E

�1=2
[�0 + �1�0 + �2�

2
0 ]
1=2 ; (7.10)

and solve for �0 in terms of �C=C0 exactly from Eq. (2.7). After substituting

the result into Eq. (7.10), we will then obtain �s in terms of �frf=frf which is

valid for all values of �0, �1, and �2. For example, when the contribution of �2

overshadows those of �0 and �1, we have,

�s =

�
heV

2��2E

�1=2

�
1=3
2

�����frffrf

����
2=3

; (7.11)
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except when �frf=frf is very close to zero. Similarly, for an �-like bucket [11],

�s =

�
heV

2��2E

�1=2
2
4�0
2
+

s
�20
4
� �1

�frf
frf

3
5 : (7.12)

VIII. MICROWAVE INSTABILITY

Since the muon collider is supposed to operate near transition with the slip-

page factor j�j � 1 � 10�6, the muon bunches will be susceptible to microwave

instability due to the lack of su�cient Landau damping. When the Hamiltonian

is �0-dominated, the allowable longitudinal coupling impedance of the vacuum

chamber for stability is given by the Boussard-modi�ed Keil-Schnell criterion

[12]: ����Zk

n

���� <�
 
2�j�0j�2E

eIp

!
�2� ; (8.1)

where a bi-Gaussian distribution of the bunch shape has been assumed and

Ip =
eNp
2���

(8.2)

is the local peak current of 12.78 kA for a bunch consisting ofN = 2�1012 muons
and an rms bunch length of �� = 10 ps and rms momentum spread �� = 0:0015.

This amounts to a limit of jZkj=n <� 0:0022 Ohms, which is way too small to be

implemented. Equation (8.1) can be rewritten as

n!0

s
eIpjZk=njj�0j

2��2E
<� n!0j�0j�� : (8.3)

The left side is the growth rate of microwave instability and the right side is

rate of Landau damping coming from the spread in frequency. For microwave

instability to occur, the wavelength of the disturbance must be less than the size

of the bunch. One estimation is a wavelength less than about 4 to 6 times the

rms bunch length of �` = 3 mm, which is equivalent to a frequency larger than

16 to 25 GHz. Another estimation is to take a frequency which is larger than the

rms bunch spectrum frequency, which is �f = 1=(2���) = 15:6 GHz. Therefore,

roughly the Landau damping time is 1=(2�nj�0j��) � 250 turns. Since this is

shorter than the storage time of � 1000 turns in the collider ring, the stability

criterion of Eq. (8.1) or (8.3) must be satis�ed.
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One may argue that the usual broad-band model has the impedance centered

around cuto� frequency. Therefore Zk=n must drop down tremendously at the

high frequencies that are responsible for microwave instability. However, the

designed pipe radius of the collider is b = 1:5 cm. With c denoting the velocity

of light, the cuto� frequency is therefore already fc = 2:405 c=(2�b) = 7:65 GHz,

which is not much lower than the � 15 GHz that we talked about. Remember

that the broad-band model is only a model and the impedance may not actually

be centered right at cuto�.

Let us investigate the possibility of having a reasonable amount of impedance

above 15 GHz. Henke [13] had computed analytically the impedance of a small

pill-box cavity. With a depth to pipe radius ratio of �=b = 0:1 and width to

pipe radius 2g=b = 0:01, the real part of the longitudinal impedance is shown

[14] in Fig. 11. We see a roughly a broad band with a peak value of � 10 
. It is

centered at !b=c � 15 or 48 GHz, which corresponds to about a half wavelength

into the cavity depth. For a collider ring circumference of 8000 m, this amounts

to ReZk=n � 7:9� 10�6 
. Note that this cavity depth is, in fact, � = 1:5 mm

and width 2g = 0:15 mm; so it is like a scratch in the beam pipe. If we add

up a lot of such \scratches" or small dings and bugglings for the whole vacuum

chamber, the total ReZk=n can be appreciable.

In Fig. 12, we plot the real part of the impedance for the same pill-box cavity

with depth increased to �=b = 0:2 and the total width increased to 2g=b = 0:2.

We see two broad peaks. The �rst one peaks at roughly 25 
 around !b=c � 6

or � 19 GHz, corresponding to ReZk=n � 5� 10�5 
. This is a cavity of depth

� = 3 mm and width 2g = 3mm. The small pill-box like cavity left behind by a

shield bellows system can be of such a size. Assuming 1000 bellows systems for

the more than a thousand elements, the impedance is thereforeRe Zk=n � 0:05 
.

In an earlier design of the sliding shielded bellows of the Superconducting Super

Collider, the pill-box like cavity left behind has a depth of � = 4 mm and a

width of as much as 2g = 10 cm when the vacuum chamber is at superconducting

temperature. Such a system gives a broad-band impedance [15] of � 40 
 at

15 GHz. For 1000 such bellows in the muon collider, the impedance adds up to

Re Zk=n � 0:1 
.

There must also be some other small discontinuities in the vacuum chamber.
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!b=c

Figure 11: Real part of longitudinal impedance as a function of !b=c for a

pill-box cavity of depth � = 0:1 b and length 2g = 0:01 b, where b is the

radius of beam pipe and !=2� is the frequency.

!b=c

Figure 12: Real part of longitudinal impedance as a function of !b=c for a

pill-box cavity of depth � = 0:20 b and length 2g = 0:20 b, where b is the

radius of beam pipe and !=2� is the frequency.
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As a result, it is not unreasonable to assume that a Zk=n of magnitude from

0.1 to 1:0 
 will be driving the microwave instability in the muon collider ring.

According to Eq. (8.3), the growth time at 15 GHz is therefore 12.5 to 39.5 turns.

For a �2-dominated bucket, we need an extension of Keil-Schnell criterion.

Notice that Eq. (8.1) can be rewritten as

 
2eIpjZk=nj
��2j�0jE

!1=2

<� 2�� : (8.4)

The left side is the height of a bucket driven by a voltage IpjZkj at harmonic n.
Stability implies that this bucket height must be less than 2�� or roughly the

half momentum spread �max. This is called self-bunching. Now we can generalize

this idea of self-bunching to the �2-dominated bucket. Using the bucket height

given by Eq. (5.2), we obtain the condition of avoiding self-bunching as

 
4eIpjZk=nj
��2j�2jE

!1=4

<� 2�� : (8.5)

Therefore, the impedance limit for microwave instability becomes

����Zk

n

���� <�
 
�j�2j�2E

eIp

!
4�4� : (8.6)

This can be obtained from Eq. (8.1) by the replacement

j�0j �! 2j�2j�2� �
1

2
�� ; (8.7)

where we have assumed �max � 2�� and the spread of slippage factor �� =

j�2j�2max. Thus, the impedance limitation here is only
1
2 that for the �0-dominated

bucket.

Next, let us examine the �-like bucket. When the driving impedance is small,

the particles will self-bunch into pendulum-like buckets as shown in Fig. 13a.

Again, when the height of the pendulum-like buckets is larger than the momen-

tum spread of the bunch, we have microwave growth. Therefore, for no growth

we require, according to Eq. (8.4),

 
2eIpjZk=nj
��2j�0jE

!1=2

<� �� : (8.8)
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Figure 13: A bunch in a �-like bucket is subjected to self-bunching by a

disturbance having a wavelength less than the size of the bunch. The self-

bunching buckets are (a) pendulum-like when the coupling impedance is

small, and change to (b) �-like when the coupling impedance is large.
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This is because the bunch has a momentum spread of �2�� in the negative

direction and only � �� in the positive direction. The impedance limit becomes

����Zk

n

���� <�
 
2�j�0j�2E

eIp

!
�2�
4

: (8.9)

This amounts to only jZk=nj = 0:00055 Ohm, which is just 1
4 of the limit in

Eq. (8.1). However, if the coupling impedance is large enough, the self-bunching

buckets will be �-like instead as depicted in Fig. 13b. This occurs when

 
6eIpjZk=nj
��2j�0jE

!1=2

>

�����0�1
���� ; (8.10)

according to Eq. (3.2). If we take j�0=�1j = 3�max = 0:009, this limit is jZk=nj =
0:0066 Ohm, which is most likely less than the impedance of the vacuum cham-

ber. Note that there are two sets of self-bunching buckets. One set has bucket

height from �j�0=�1j to j�0=2�1j and the other from �j3�0=2�1j to 0. Unlike the
microwave instability in the usual pendulum-like bucket which may lead only to

a growth of longitudinal emittance, here particles will be lost by leaking out from

the original �-like bucket of the bunch, while, for example, making synchrotron

oscillation inside the self-bunching �-like buckets centered at � = �j�0=�1j. The
rate is just the synchrotron frequency inside the self-bunching bucket or, in terms

of number of turns,

�N =
1

2�n

 
2��2E

eIpjZk=njj�0j

!1=2

: (8.11)

For a broad-band disturbance of jZk=nj = 1 Ohm, centered at 20 GHz or har-

monic n = 5:33� 105, this amounts to �N = 9:36 turns.

It is worth pointing out that the self-bunching buckets in Fig. 13 have been

sketched over-simpli�ed. The strength of the self-bunching force depends on

I`jZkj where I` is the local linear current. As we are moving from the center to

the edge of the bunch, the self-bunching force will decrease to zero. Therefore,

the two series of self-bunching �-like buckets will become fatter away from the

bunch center and will eventually merge to form pendulum-like buckets instead

near the edge of the bunch.

Bunch particles that are not inside a self-bunching bucket can also be lost.

For example, a particle at point A will travel to point B. The time taken can be
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computed. Let A be at the point where the phase is �=2 in unit of the disturbance

harmonic and momentum spread zero. From the Hamiltonian (3.1),

�N =
�t

T0
=

�21
n�30

Z �=2

0

d��

p2 + p
; (8.12)

where

p =
�1�

�0
(8.13)

is a normalized momentum spread and depends on � through

p3 +
3p2

2
=

1

4
+
3eIpjZk=nj
4��2E

�21
�30

cos�� : (8.14)

In Eq. (8.12), T0 is the revolution period. Therefore, the left side �N is the

number of turns, and its inverse represents a loss rate, which is proportional to

the harmonic n of the disturbance. The integral cannot be performed analyti-

cally. However when IpjZk=nj is very large, or more exactly when the left side of

Eq. (8.14) is very much larger than 1
2 , the integral can be estimated to obtained

1

�N
= 2nj�0j

 
3eIpjZk=nj
4��2E�1

!2=3

: (8.15)

With j�0j = 1 � 10�6, j�0=�1j = 3�max = 0:009, and a bunch intensity of

2� 1012 muons, the integral in Eq. (8.12) is evaluated numerically, and the loss

time �N is plotted in Fig. 14 for di�erent values of the impedance. Also plotted

is the loss rate 1=�N , which is not far from the dotted curve, which is the

estimate given by Eq. (8.15). We see that this loss time is around 1500 turns

even when jZk=nj =1 Ohm, which is very much longer than the 9.36 turn loss

time due to synchrotron oscillations inside a self-bunching �-like bucket. Such

slow rate may come from the fact that the trajectory AB is situation between

two sets of separatrices.

IX. CONCLUSION

In order to have a muon bunch of rms length 3 m and rms momentum spread

0.15% to be stored in the muon collider with a reasonable rf, we found that the

slippage factor of the collider must be kept to j�(�)j <� 1� 10�6 for j�j � �max.
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Figure 14: The growth time and growth rate for a bunch inside an �-like

bucket, when the self-bunching buckets are also �-like. The dotted curve is

an analytic estimate.

In other words, the muon collider must be operating in the quasi-isochronous

region.

The zeroth order momentum-compaction factor �0 of the lattice, and hence

the zeroth order slippage factor �0, can be controlled by adjusting the negative

dispersion at the ends of the 
exible momentum-compaction module. The �rst

and second orders, �1 and �2, or �1 and �2, can be controlled by sextupoles. As

a result, there are three types of quasi-isochronous buckets. The one dominated

by �0 is the usual pendulum-like bucket. The one dominated by �0 and �1 is the

�-like bucket. The one dominated by only �2 is also pendulum like, although

there is more nonlinearity. All of these buckets have been discussed. Out of

them, the �-like bucket, being asymmetric in momentum spread, is susceptible

to longitudinal head-tail instability. Therefore, it is best to eliminate the �1

contribution through placement of sextupoles.

The lattice will then depend on �0 and �2. We found that the �2 contribution

gives rise to large dependency of synchrotron frequency with amplitude. In fact,
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if the �0 contribution is removed, the \potential-well" in the momentum direction

is quartic in nature. The synchrotron frequency then starts from zero frequency

and rises to a maximum at some amplitude. Such a large variation of synchrotron

frequency may be advantageous to damping any mode-coupling instability.

The problem of microwave instability has been investigated. Using the con-

cept of self-bunching, Keil-Schnell criterion for stability has been derived for each

of the three quasi-isochronous buckets. We found that the stability limit for the

�0 only bucket is only jZk=nj <� 0:0022 Ohm, and smaller still for the other two

buckets. We also argued that it is reasonable to believe the broad-band mi-

crowave driving force centered >� 15 GHz, can have a peak value of jZk=nj � 0:1

to 1 Ohm. Thus, the growth time can be as short as 12.5 to 39.5 turns. So

microwave instability will become the most serious problem of the muon collider.

We also found that in most cases the self-bunch buckets for the muon in the

�-like bucket will also be �-like. In that case, particle loss will be inevitable.

We pointed out that the lattice code SYNCH will not be able to compute

correctly �2 although �1 can be computed rather accurately. Therefore, we

must resort to measurement when the lattice is tuned to control �2.
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APPENDIX

The higher orders of the slippage factor must be de�ned carefully. Here, we

follow a derivation of Edwards and Syphers [16]. A particle with momentum

o�set �n sees an accumulated rf phase �n on its n-th passage of the rf cavity,

which is considered to have an in�nitesimal length. On its (n+1)-th passage, at

a time Tn+1 +�Tn+1 later, the accumulated rf phase seen becomes

�n+1 = �n + !rf(Tn+1 + �Tn+1) ; (A.1)

where !rf=2� is the rf frequency, Tn+1 is the revolution period of the synchronous

particle during its (n+1)-th turn and �Tn+1 is the extra time taken by o�-

momentum particle to complete the revolution. On the other hand, the rf phase

seen by the synchronous particle accumulates according to

�sn = !rf tn ; (A.2)

where tn is the total accumulated time up to the n-th passage of the cavity.

Because the o�-momentum particle belongs to a bunch with the synchronous

particle, we like to measure the rf phase seen relative to the synchronous particle.

This leads to the introduction of the rf phase o�set or rf phase slip ��n de�ned

by

��n = �n � �sn = �n � !rftn ; (A.3)

Substituting into Eq. (A.1) and noting that Tn+1 = tn+1 � tn, we arrive at

��n+1 = ��n + !rf�Tn+1 : (A.4)

In order for the synchronous particle to be synchronized, one must adjust the rf

frequency so that !rfTn+1 = 2�h for all turns, where h is the rf harmonic number.

Now, we can introduce the slippage factor as the slip in revolution period at the

(n+1)-th passage of the cavity by

�Tn+1

Tn+1
= �n+1�n+1 : (A.5)

Here, the subscript of � implies its dependence on the momentum o�set of the

particle at the (n+1)-th passage and not its higher-order expansion term. When

smoothing is applied, we obtain the phase-slip equation of Eq. (2.8),

d��

dt
= !0�� : (A.6)
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Since the revolution period can be expressed as

T =
C

�c
; (A.7)

we can easily expand T as a Taylor series in �, from which each higher-order of

the slippage factor can be identi�ed. For example, we have

T 0

T0
=

C0

C
� �0

�
;

T 00

T0
=

2C02

C2
� 2�0C0

�C
� �00

�
+
2�02

�2
;

T 000

T0
=

C000

C
� 3�0C00

�C
� 3�00C0

�C
+

6�02C0

�2C
� �000

�
� �0�00

�2
� 6�03

�3
; (A.8)

where the prime denotes di�erentiation with respect to � and all variables are

evaluated at the synchronous values, i.e., with subscript zero. The derivatives of

C can be read o� easily from Eq. (2.7). The derivatives of � can be computed

straightforwardly. They are:
�0

�
=

1


2
;

�00

�
= �3�

2


2
;

�000

�
= �3�

2(1� 5�2)


2
: (A.9)

With the expansion of the slippage factor

� = �0 + �1� + �2�
2 + � � � ; (A.10)

the expressions for �0, �1, and �2 in Eqs. (2.10), (2.11), and (2.10) are obtained.

Looking at the phase slip equation above, one may be tempted to relate

d��=dt to ��!=h. This will translate the equation to

�!

!0
= ��� : (A.11)

which is di�erent from Eq. (A.5) and therefore lead to incorrect expressions for

the higher-order terms of �. This misconception comes about in the smooth-

ing procedure from Eq. (A.4) to Eq. (A.6), where we divide throughout by the

synchronous period. If �! of the o�-momentum particle is desired, one should
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divide instead by Tn+1 + �Tn+1, the revolution period of the o�-momentum

particle.

Another de�nition in the literature is [17]

� = � 1

!0

d!

d�
; (A.12)

which is incompatible with the phase-slip equation in Eq. (A.6). This de�nition

originates from the lowest expansion in ! [18], and is therefore insu�cient when

higher-orders in � are studied. This is, in fact, a variation of the incorrect

de�nition of Eq. (A.11).
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